Lời giải:
Gọi $d=ƯCLN(a,b)$
$\Rightarrow a\vdots d; b\vdots d$
$\Rightarrow 18a+5b\vdots d; 11a+3b\vdots d$
$\Rightarrow d=ƯC(18a+5b, 11a+3b)$
$\Rightarrow d$ là ước của $ƯCLN(18a+5b,11a+3b)(*)$
Gọi $k=ƯCLN(18a+5b, 11a+3b)$
$\Rightarrow 18a+5b\vdots k, 11a+3b\vdots k$
$\Rightarrow 3(18a+5b)-5(11a+3b)\vdots k$
$\Rightarrow a\vdots k$
Và: $11(18a+5b)-18(11a+3b)\vdots k$
$\Rightarrow b\vdots k$
$\Rightarrow k=ƯC(a,b)$
$\Rightarrow k$ là ước của $ƯCLN(a,b)(**)$
Từ $(*); (**)$ ta có $d$ là ước của $k$ và $k$ là ước của $d$.
$\Rightarrow k=d$
$\Rightarrow ƯCLN(18a+5b, 11a+3b)=ƯCLN(a,b)$