Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Ta có:
2k.(2k + 2)
= 2k.2.(k + 1)
= 4.k.(k + 1)
Vì k.(k + 1) là tích 2 số liên tiếp => k.(k + 1) chia hết cho 2
=> 4.k.(k + 1) chia hết cho 8
=> 2k.(2k + 2) chia hết cho 8 ( đpcm)
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Ta có:
2k.(2k + 2)
= 2k.2.(k + 1)
= 4.k.(k + 1)
Vì k.(k + 1) là tích 2 số liên tiếp => k.(k + 1) chia hết cho 2
=> 4.k.(k + 1) chia hết cho 8
=> 2k.(2k + 2) chia hết cho 8 ( đpcm)
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
a, chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
b, chứng minh rằng tích của 4 số chẵn liên tiếp thì chia hết cho 384
-Chứng minh rằng: -Tích của 2 số chẵn liên tiếp thì chia hết cho 8.
-tích của 3 số chẵn liên tiếp thì chia hết cho 48.
-Tích của 4 số chẵn liên tiếp thì chia hết cho 384.
Chứng minh rằng :
a) Tích của 2 số chẵn liên tiếp thì chia hết cho 8.
b) n5- n chia hết cho 10 .
c) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.
Chứng minh rằng tích hai số chẵn liên tiếp thì chia hết cho 8
chứng minh rằng :
a) 1010 - 1 chia hết cho 9
b) 109 + 2 chia hết cho 3
c) tổng hai số chẵn liên tiếp không chia hết cho 4
d) tích của 2 số tự nhiên liêp tiếp bao giờ cũng là một số chẵn
e) tích hai số chẵn liên tiếp chia hết cho 8
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
chứng minh rằng
A,tích 2 số chẵn liên tiếp chia hết cho 8
B,tích 3 số nguyên liên tiếp chia hết cho 6
C,tích 5 số nguyên liên tiếp chia hết cho 120
Chứng minh tích 2 số chẵn liên tiếp chia hết cho 8.