Đặt Sn=\(\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n\)
Ta có: \(\left(2+\sqrt{3}\right)\) và \(\left(2-\sqrt{3}\right)\)là nghiệm của phương trình:
x2 - (\(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)) x + (\(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)) = 0 <=>
x2-4x+1=0 =>x2 =4x -1 Nhân 2 vế cho xn-2 :
xn=4xn-1 -xn-2
.Thế x = \(\left(2+\sqrt{3}\right)\)được:
\(\left(2+\sqrt{3}\right)^n=4\left(2+\sqrt{3}\right)^{n-1}-\left(2+\sqrt{3}\right)^{n-2}\) (1)
Thế x = \(\left(2-\sqrt{3}\right)\)được:
\(\left(2-\sqrt{3}\right)^n=4\left(2-\sqrt{3}\right)^{n-1}+\left(2-\sqrt{3}\right)^{n-2}\)(2)
\(\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n=4\cdot\left(\left(2+\sqrt{3}\right)^{n-1}+\left(2-\sqrt{3}\right)^{n-1}\right)-\left(\left(2+\sqrt{3}\right)^{n-2}+\left(2-\sqrt{3}\right)^{n-2}\right)\)
<=> Sn = 4Sn-1-Sn-2 (*)
Ta có S0 = 2 là số chẵn, S1 = 4 là số chẵn => S3 là số chẵn
Tương tự => S4, S5, ... Sn là số chẵn với mọi n >=0 => S2016 = \(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}\) là số chẵn (đpcm)
Bổ sung dùm mình dưới (2):
Lấy (1)+(2) theo vế ta được: