cho S=1/1!+1/2!+1/3!+...+1/2012! chứng minh rằng S>2
Chứng minh S=1/2-1/3+1/4-1/5+1/6-1/7+...+1/2012-1/2013+1/2014 <2/5
S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2012!}\)
Chứng minh S <2
Cho \(S=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}\) . Chứng minh rằng S < 2
cho S=1/1!+1/2!+1/3!+...+1/2012!.CHUNG MINH S<2
Chứng minh S=1/2+1/22+1/23+1/24+...+1/22012+1/22013 < 1
Chứng minh rằng:
S = \(1+\frac{1}{2^2^{ }}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)không phải là số tự nhiên
Chứng tỏ:\(S=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2012!}< 3\)
Bài 1: Chứng minh rằng A<B<1 biết:
A = 3/1.4+3/4. … . 3/n.(n+1).
B = 1/^2+1/3^2+1/4^2+ … + 1/n^2.
Bài 2: Cho S = 3/10+3/11+3/12+3/13+3/14. Chứng minh rằng 1<S<2. Từ đó suy ra S không phải là số tự nhiên.
Bài 3: Chứng minh rằng 3/5<S<4/5 với S = 1/31+1/32+1/33+…+1/60.
Các bạn nhớ giải đầy đủ và theo cách của Toán lớp 6 nâng cao nhé!