Lời giải:
Dễ dàng thấy $S>0$
Mặt khác:
$S=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1$
Vậy $0< S< 1$ nên $S$ không phải số nguyên.
Hôm nay olm sẽ hướng dẫn các em giải dạng chứng minh một số không phải là một số nguyên thì các em cần sử dụng nguyên lý kẹp em nhé. Em cần chứng minh a < S < a + 1 ( a \(\in\) Z)
Sau đó em lập luận vì S nằm giữa hai số nguyên liên tiếp nên S không phải là số nguyên vì không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Giải:
S = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)+ \(\dfrac{1}{103}\)+ ...+ \(\dfrac{1}{200}\)
Xét dãy số: 101; 102;...; 200 có số số hạng là (200 - 101):1+1= 100
Mặt khác ta cũng có \(\dfrac{1}{101}\)> \(\dfrac{1}{102}\)> \(\dfrac{1}{103}\)> ...> \(\dfrac{1}{200}\)
⇒ \(\dfrac{1}{101}\) \(\times\) 100 > \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\) > \(\dfrac{1}{200}\) \(\times\) 100
⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{100}{200}\)⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{1}{2}\) ⇒ 1 > S > 0 ⇒ S \(\notin\) Z (đpcm)
Vì 0 và 1 là hai số nguyên dương liên tiếp nên S không phải là số nguyên do không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.