a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
3n+4 và 2n+3 là hai số nguyên tố cùng nhau khi UCLN(3n+4,2n+3)=1
gọi UCLN(3n+4,2n+3) là d
suy ra 3n+4 chia hết cho d và 2n+3 chia hết cho d
1 chia hết cho d suy ra d=1
suy ra UCLN(3n+4,2n+3)=1
vậy 3n+4 và 2n+3 là hai số nguyên tố cùng nhau
mình thấy bạn monika giải đúng nhất đấy
a) Gọi d là ƯC ( 3n +4 ; 2n + 3 )
= 3n + 4 : hết cho d ; 2n +3 : hết cho d
=6n + 8 : hết cho d ; 6n +9 : hết cho d
= ( 6n +9 ) - ( 6n +8 ) : hết cho d
= 1 chia hết cho d ; d chia hết cho 1
Nên .............
b) Tương tự nhé BF