\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)
\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)
\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)
\(=\frac{a^2}{bc}-\frac{a^2}{bc}\) \(\left(c+b=a\right)\)
\(=0\)
\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)
Ta có:
\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)
\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)
\(\Rightarrow VT=VP\)
Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)