Bạn tham khảo tại đây nhé!!
olm.vn/hoi-dap/detail/195135296784.html
\(n^4-4n^3-4n^2+16n=n\left(n^3-4n^2-4n+16\right)\)
\(=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]=n\left(n-4\right)\left(n^2-4\right)=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)
Vì n là số tự nhiên chẵn \(\Rightarrow n=2k\)( \(k\inℕ\))
\(\Rightarrow2k\left(2k-4\right)\left(2k-2\right)\left(2k+2\right)=16k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)
Vì \(k\), \(k-2\), \(k-1\), \(k+1\)là 4 số tự nhiên liên tiếp
\(\Rightarrow\)Luôn tồn tại ít nhất 2 số chẵn liên tiếp \(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮8\)
Vì \(k\), \(k-1\), \(k+1\)là 3 số tự nhiên liên tiếp \(\Rightarrow k\left(k-1\right)\left(k+1\right)\left(k-2\right)⋮3\)
mà \(\left(3;8\right)=1\)\(\Rightarrow k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮24\)
\(\Rightarrow16k\left(k-2\right)\left(k-1\right)\left(k+1\right)⋮384\)
hay \(n^4-4n^3-4n^2+16n⋮384\)