Chứng minh rằng: \(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
Chứng minh rằng: \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\frac{-3}{2}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh \(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>6\)
Chứng minh các đẳng thức sau:
e) \(\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}-4.\sqrt{\dfrac{3}{2}}\right).\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}+4.\sqrt{\dfrac{3}{2}}\right)=-\sqrt{2}\)
Chứng minh rằng:
a)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
b) \(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)
Chứng minh các đẳng thức sau:
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Cho 0<x<2. Chứng minh rằng:
\(\dfrac{4-\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}+\sqrt{\left(2-x\right)^3}}\) + \(\dfrac{4+\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}}\) = \(\dfrac{\sqrt{2+x}}{x}\)