CMR:
a, \(\frac{\cot^2x-\sin^2x}{\cot^2x-tan^2x}=sin^2x.\cos^2x\)
b, \(\frac{\tan x}{1-\tan^2x}.\frac{\cot^2-1}{\cot x}=1\)
c, \(\frac{1+\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\tan x+1}{\cot x+1}\)
d, \(\frac{\sin x+\cos x-1}{\sin x-cosx+1}=\frac{\cos x}{1+sinx}\)
a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
cho mình hỏi: chứng minh đẳng thức này: \(\sin^2x\left(1+\cot x\right)x+\cos^2\left(1+\tan x\right)=\left(\sin x+\cos x\right)^2\)có thể giải bằng cách lấy VT - VP = 0 có dc ko và tại sao ?
chứng minh đẳng thức này \(\frac{\sin x+\cos x-1}{\sin x-\cos x+1}=\frac{\cos x}{1+\sin x}\) có thể quy đồng rồi lấy VT - VP = 0 có dc ko và tại sao ?
Thanks nhiều
Chứng minh rằng:
\(\frac{sin\left(x\right)+sin\left(\frac{x}{2}\right)}{1+cos\left(x\right)+cos\left(\frac{x}{2}\right)}=tan\left(\frac{x}{2}\right)\)
Cho tam giác ABC có G là trọng tâm . Đặt \(\widehat{GBC}=\alpha\), \(\widehat{GBC}=\beta\), \(\widehat{GCA}=\gamma\). Chứng minh rằng \(\cot\alpha+\cot\beta+\cot\gamma=\frac{3\left(a^2+b^2+c^2\right)}{4S}\)
Cho biết \(\cos\alpha=-\frac{2}{3}\)
Tính \(A=\frac{\cot\alpha+2\tan\alpha}{2\cot\alpha+\tan\alpha}\)
hh
Cmr trong mọi tam giác ABC
a) a = b.\(\cos C\) + c.\(\cos B\)
b) a = r(\(\cot\frac{B}{2}\) + \(\cot\frac{C}{2}\))
c) ra = p.\(\tan\frac{A}{2}\)
d) r = (p - a).\(\tan\frac{A}{2}\)
Chứng minh rằng biểu thức sau không phụ thuộc a,b\(\left[tan\left(90-a\right)-cot\left(90+a\right)\right]^2-\left[cot\left(180+a\right)+cot\left(270+a\right)\right]^2\)
Giải phương trình :
a, \(\left(\frac{x+1}{x-2}\right)^2\)+ \(\frac{x+1}{x-3}\)= 12\(\left(\frac{x-2}{x-3}\right)^2\)
b, \(\frac{2\left(x+1\right)}{3x^2+x}\)+ \(\frac{13\left(x+1\right)}{3x^2+7x+6}\)= 6