Nguyễn Văn Ngu

chứng minh rằng\(\frac{a}{3}\)+\(\frac{a^2}{2}\) +\(\frac{a^3}{6}\) là 1 số nguyên với mọi a nguyên

Hiền Thương
30 tháng 1 2022 lúc 11:43

Ta có \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)

Lại có  2a + 3a2 + a3

  =a(2+3a+a2

= a(a2 + 3a +2)

=a(a2 +a +2a +2)

= a[a(a+1) + 2(a+1)]

=a [(a+1) (a+2)]

= a(a+1)(a+2)

ta thấy a(a+1)(a+2) là tích 3 số nguyên liên tiếp 

=> a(a+1)(a+2) \(⋮3\) và \(⋮\)2

mà (2;3)=1

=>  a(a+1)(a+2) \(⋮\)

=> \(\frac{a\left(a+1\right)\left(a+2\right)}{6}\) là số nguyên hay \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên

Khách vãng lai đã xóa

\(\text{Ta có:}\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)

\(\Leftrightarrow\frac{2a+3a^2+a^3}{6}\)

\(\text{Xét tử số:}\)

\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)

\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]\)

\(=a\left(a+1\right)+\left(a+2\right)\)

\(\text{Vì a,a+1 là 2 số nguyên liên tiếp nên:}\)

\(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)\left(a+2\right)⋮2\)

\(\Leftrightarrow a^3+3a^2+2a⋮2\left(1\right)\)

\(\text{Mặt khác }a,a+1,a+2\text{ là 3 số nguyên liên tiếp nên chúng}⋮3\)

\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮3\)

\(\Leftrightarrow a^3+3a^2+2a⋮3\left(2\right)\)

\(\text{Từ (1) và (2) kết hợp (2;3) nguyên tố cùng nhau:}\)

\(\Rightarrow a^3+3a^2+2a⋮6\)

\(\Rightarrow\frac{a^3+3a^2+2a}{6}\inℤ\)

\(\Rightarrow\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\text{ là 1 số nguyên}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Tất Đạt
Xem chi tiết
minhanh
Xem chi tiết
Ann Ann
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Hoàng Tử Lớp Học
Xem chi tiết
Nguyen Ha
Xem chi tiết
Anh Nguyễn
Xem chi tiết
Cù Thúy Hiền
Xem chi tiết
Khánh Chi
Xem chi tiết