Đặt S bằng tổng dãy số trên.
=>S=3/4!+3/5!+.....+3/100!
=>S<3/4!+4/5!+.....+99/100!
=>S<1/3!-1/4!+1/4!-1/5!+.....+1/99!-1/100!
=>S<1/3!-1/100!
=>S<1/3!.Vậy S<1/3!
haaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Đặt S bằng tổng dãy số trên.
=>S=3/4!+3/5!+.....+3/100!
=>S<3/4!+4/5!+.....+99/100!
=>S<1/3!-1/4!+1/4!-1/5!+.....+1/99!-1/100!
=>S<1/3!-1/100!
=>S<1/3!.Vậy S<1/3!
haaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Chứng minh rằng : \(D=\frac{3}{4!}+\frac{3}{5!}+\frac{3}{6!}+...+\frac{3}{100!}< \frac{1}{6}\)
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{99}{100}\)
Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
Chứng minh rằng :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}...+\frac{1}{100^2}<\frac{3}{4}\)
Chứng minh rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}< \frac{1}{100}\)
chứng minh rằng \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{9999}{1000}< \frac{1}{100}\)
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
1. Chứng Minh Rằng \(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+.....+\frac{100}{3^{100}}<\frac{3}{4}\)
2. Chứng Minh Rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2012}\)
bài 1:
tìm n biết: 5n+7 chia hết 3n+2
bài 2:
1, tìm chữ số tận cùng của:
a,57^1999
b,93^1999
2, Cho A= 999993^1999 - 555557^1997
chứng minh rằng: A chia hết cho 5
bài 3:chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 5:Tìm x biết:
a)11.(x-6)=4.x+11
b)\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\)với x\(\in\)Z
c)|x-3|+1=x