cậu nhờ mấy bn giỏi giỏi ý ko mik bảo tra trên google mấy bn lại bảo mik câu ****
cậu nhờ mấy bn giỏi giỏi ý ko mik bảo tra trên google mấy bn lại bảo mik câu ****
Tính:
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}+\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}+\frac{1}{\sqrt{8}-\sqrt{9}}\)
Giúp mình với nhé. Cảm ơn
Chứng minh đẳng thức \(\frac{1+\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{1+\sqrt{3}}}{2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1..\)
Mọi người giúp em với ạ! Em cảm ơn
Tính: \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}\)
Làm ơn giúp mình với T^T
1. Chứng minh rằng
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
2. Chứng minh rằng
\(\frac{\sqrt{1}}{1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}+...+\frac{\sqrt{200}}{200}>10+5\sqrt{2}\)
3. Cho a >= 1, b >= 1, chứng minh rằng
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
4. Giải phương trình
\(\sqrt{\left(x^2-2x+5\right)\left(x^2-4x\right)+7}+x^2-3x+6\)
LÀM PHIỀN M.N GIÚP MK. XIN CẢM ƠN !!!
a)Cho a>b>0 chứng minh rằng \(\frac{1}{a+b}\le\frac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}< \frac{1}{2}\)
Chứng minh rằng
\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}< 18\)
giải cụ thể dùm mình nhé
TÍNH
\(D=\sqrt{1+\frac{1}{^{1^2}}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+.....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
CÁC BẠN GIẢI CHI TIẾT RA CHO MÌNH VỚI, MÌNH ĐANG CẦN RẤT GẤP, CÁM ƠN NHIỀU!!!!!(CHỨNG MINH DẠNG TỔNG QUÁT RỒI LÀM CHO MÌNH NHA)
chứng minh rằng
B= \(\frac{\sqrt{2}-\sqrt{1}}{2+1}+\frac{\sqrt{3}-\sqrt{2}}{3+2}+\frac{\sqrt{4}-\sqrt{3}}{4+3}+......+\frac{\sqrt{100}-\sqrt{99}}{100+99}< \frac{1}{2}\)
chứng minh:
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\)