Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
Bài 1 : Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{79}{80}\)
Chứng minh rằng A < \(\frac{1}{9}\)
Bài 4 : Chứng minh rằng: 1.3.5.7....19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Chứng minh rằng:
\(\frac{10}{11!}+\frac{11}{12!}+\frac{12}{13!}+...+\frac{2014}{2015!}< \frac{1}{10!}\)
chứng tỏ rằng :\(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Bài 1:
a) A = 1 +\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\) . Chứng minh rằng A \(⋮\) 100.
b) A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\). Chứng minh rằng A > \(\frac{4}{3}\)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{70}\)
Chứng minh rằng:\(\frac{4}{3}< A< 35\)
Cho A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)Chứng minh rằng 0,2<A<0,4
$\frac{1}{11}$ + $\frac{1}{12}$ + $\frac{1}{13}$ + ... + $\frac{1}{20}$ với $\frac{1}{2}$
1) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh rằng : S > 1