Đặt \(A=\frac{10}{11!}+\frac{11}{12!}+\frac{12}{13!}+...+\frac{2014}{2015!}\)
\(=\frac{11-1}{11!}+\frac{12-1}{12!}+\frac{13-1}{13!}+...+\frac{2015-1}{2015!}\)
\(=\frac{11}{11!}-\frac{1}{11!}+\frac{12}{12!}-\frac{1}{12!}+\frac{13}{13!}-\frac{1}{13!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
\(=\frac{11}{10!.11}-\frac{1}{11!}+\frac{12}{11!.12}-\frac{1}{12!}+\frac{13}{12!.13}-\frac{1}{13!}+...+\frac{2015}{2014!.2015}-\frac{1}{2015!}\)
\(=\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+\frac{1}{12!}-\frac{1}{13!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
\(=\frac{1}{10!}-\frac{1}{2015!}< \frac{1}{10!}\)