Câu \(C=\left(...\right)\) thiếu đề
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(............\)
\(\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\)\(D=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(\Rightarrow\)\(D< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\)\(D< 1-\frac{1}{10}< 1\)
\(\Rightarrow\)\(D< 1\) ( đpcm )
Vậy \(D< 1\)
Chúc bạn học tốt ~
\(C=\frac{1}{15}+\frac{1}{35}+....+\frac{1}{2499}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+........+\frac{1}{49.51}\)
\(C=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\frac{16}{51}\)
\(C=\frac{8}{51}\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}\)
ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(....................\)
\(\frac{1}{10^2}=\frac{1}{10.10}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{9.10}\)
\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow D< 1-\frac{1}{10}\)
\(\Rightarrow D< \frac{9}{10}\) ( 1 )
mà \(\frac{9}{10}< 1\) ( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow D< 1\left(\text{đ}pcm\right)\)