Cho \(A=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{199}{200}\)và chứng minh \(A^2< \frac{1}{201}\)
Chứng minh rằng
a)\(\frac{5}{8}<\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}<\frac{3}{4}\)
b)\(\frac{1}{4}+\frac{1}{6}+\frac{1}{16}+...+\frac{1}{10000}<\frac{3}{4}\)
c)(\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{199}{200}\))2 <\(\frac{1}{201}\)
d)\(50<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{2^{100}-1}<100\)
CHO C=\(\frac{1}{2}\).\(\frac{3}{4}\).\(\frac{5}{6}\)....\(\frac{199}{200}\)
CHỨNG MINH RẰNG \(C^2\)<\(\frac{1}{201}\)
Cho \(S=\frac{1}{2}+\frac{3}{4}+\frac{5}{6}+...+\frac{199}{200}\)Chứng minh rằng : \(S^2<\frac{1}{201}\)
Chứng minh :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh rằng:
a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) \(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)
1)Chứng minh các phân số sau là các phân số tối giản:
a)\(A=\frac{12n+1}{30n+2}\)
b)\(B=\frac{14n+17}{21n+25}\)
2)Chứng minh rằng:
a)\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b)\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c)\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Bài 1 : Chứng minh
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b) \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}< \frac{1}{100}\)
Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)