Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy Anh

Chứng minh rằng

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}< 1\)

Thanh Hằng Nguyễn
29 tháng 6 2017 lúc 15:34

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2015^2}\)

\(\Leftrightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2014.2025}\)

\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2014.2015}\)

\(\Leftrightarrow B< 1-\frac{1}{2015}< 1\)

\(\Leftrightarrow B< 1\rightarrowđpcm\)

Dũng Lê Trí
29 tháng 6 2017 lúc 16:12

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)

+ Xét : \(\frac{1}{1\cdot2}>\frac{1}{2^2}\)

\(\frac{1}{2\cdot3}>\frac{1}{3^2}\)

\(\frac{1}{3\cdot4}>\frac{1}{4^2}\)

...

\(\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(A=1-\frac{1}{2015}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)


Các câu hỏi tương tự
Kaitoru
Xem chi tiết
Phạm Nam Khánh
Xem chi tiết
Tiểu
Xem chi tiết
Phạm Thị Hải Minh
Xem chi tiết
Đông joker
Xem chi tiết
๒ạςђ ภђเêภ♕
Xem chi tiết
Linhh - chan
Xem chi tiết
lucy
Xem chi tiết
Hoàng Thiện Nhân
Xem chi tiết