\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)
\(B=8\left(1+7^2+7^4+...+7^{100}\right)\)
\(\text{Vì 8⋮8}\Rightarrow8\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
\(\text{Hay B⋮8}\)
\(\text{Vậy B⋮8}\)
\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)
B = (1+7) + (72+73) + (74+75)+...+(7100+7101)
B = 1 x (1+7)+ 72x (1+7) + 74x(1+7) +...+ 7100x (1+7)
B = (1+72+74+...+7100) x (1+7)
B = ( 1+72+74+...+7100) x 8
Vì 8 chia hết cho 8 nên (1+72 +74+...+7100) x 8 chia hết cho 8
Vậy B chia hết cho 8
Study well !
\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)
\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(\Rightarrow B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(\Rightarrow B=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+...+7^{100}.\left(1+7\right)\)
\(\Rightarrow B=8.1+7^2.8+7^4.8+...+7^{100}.8\)
\(\Rightarrow B=\left(1+7^2+7^4+...+7^{100}\right).8\)
Vì \(8⋮8\)nên \(\left(1+7^2+7^4+...+7^{100}\right).8⋮8\)
hay \(B⋮8\)
B= 1 + 7 + 7^2 + 7^3 +7^4+.............7^101
B= (1 + 7 ) +(7^2+7^3)+(7^4=7^50+)............+(7^100+7^101)
B=8 + 7^2(1+7)+7^4+.............+7^100 + ( 1+7)
B= 8 +7^2.8+7^4+7^4+8+7^100