Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
like game

Chứng minh rằng

a) Với mọi số nguyên dương n có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+..+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)

b) \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}< \sqrt{2017}+\sqrt{2018}\)

 Hộ mình vs

Le Hong Phuc
22 tháng 5 2020 lúc 11:16

Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)

Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)

Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)

Từ (1), (2) => Sai

Khách vãng lai đã xóa
Tran Le Khanh Linh
22 tháng 5 2020 lúc 20:22

a) Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,....,n rồi cộng từng vế ta có:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Charlet
Xem chi tiết
Nguyễn Hà Chi
Xem chi tiết
Charlet
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Thắng Trịnh
Xem chi tiết
Cầm Dương
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Trương Khánh Hoàng
Xem chi tiết
Lê Hà Vy
Xem chi tiết