Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
a) Ta có :1/22 + 1/32 + 1/42 + ... + 1/20082 < 1-1/2+1/2-1/3+...+1/2007-1/2008=1-1/2008<1
=> ĐPCM
\(a)\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}< 1\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2008.2008}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2007.2008}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2008.2008}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2008.2008}< 1-\frac{1}{2008}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}< 1\)