Chứng minh rằng: \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\) ( n là số nguyên dương)
Nếu n \(\in\)N sao cho \(\hept{\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}}\left(a,b\in Z\right)\)
Chứng minh \(n⋮40\)
1) Cho a thỏa mãn: \(a^5-a^3+a=2\) Chứng minh rằng: \(a^6< 4\)
2) Chứng minh rằng: \(\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{n}{2}-\frac{n^2}{4n+2}\)
Chứng minh \(\forall n\in Z\)
\(A\left(n\right)=n\left(n^3+1\right)\left(n^2+4\right)⋮5\)
Chứng minh rằng : \(a_n=\frac{2.4.6.....\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}+1\) là số chính phương
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
Cho n là số nguyên dương lớn hơn 1. Chứng minh rằng:
\(\frac{1}{n!}< \left(2-\frac{1}{n}\right)\left(2-\frac{3}{n}\right)...\left(2-\frac{2n-1}{n}\right)\)
a) cho \(0\le x\le3;0\le y\le4\)chứng minh rằng: \(\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\le36\)
b) chứng minh rằng: với n là số tự nhiên thì: \(11^{n+2}+12^{2n+1}\)chia hết cho 133.
Chứng minh :\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\left(n\in Z^+\right)\)