\(10^{2017}+10^{2016}+10^{2015}\)
\(=10^{2015}\left(10^2+10+1\right)\)
\(=10^{2015}.111\)
Do \(10^{2015}⋮5;111⋮111\)
\(\Rightarrow10^{2015}⋮\left(5.111\right)=555\)
Vậy => ĐPCM
\(10^{2017}+10^{2016}+10^{2015}\)
\(=10^{2015}.10^2+10^{2015}.10^1+2015\)
\(=10^{2015}.100+10^{2015}.10+10^{2015}.1\)
\(=10^{2015}.\left(100+10+1\right)\)
\(=10^{2015}.111\)
Vì \(10^{2015}⋮5\); \(111⋮111\)
\(\Rightarrow10^{2015}⋮\left(5.111\right)\)
\(\Rightarrow10^{2015}⋮555\)
Vậy \(10^{2017}+10^{2016}+10^{2015}⋮555\)
102017 + 102016 + 102015
= 102015 (102 + 10 + 1)
= 102015 .111
=> 102015 \(⋮\)5 và 102015 \(⋮\)11
=> 102015 \(⋮\)(5 . 111)
=> 102015 \(⋮\)555 (đpcm)
mk thiếu 1 số 1 chỗ dòng số 4 nhé. Số 11 thành số 111
\(10^{2017}+10^{2016}+10^{2015}\)
\(=10^{2015}.\left(10^2+10+1\right)\)
\(=10^{2015}.111\)
\(=10^{2014}.2.555\)
Ta có: \(555⋮555\)
\(\Rightarrow10^{2014}.2.555⋮555\)
\(\Rightarrow10^{2017}+10^{2016}+10^{2015}⋮555\)
đpcm