Vì 102016+14 là số chẵn nên chia hết cho 2
Ta có: 102016+14=10...0+14=100...014
Lại có : 1+0...0+1+4=6 chia hết cho 3
=> 102016+14 chia hết cho 3
Kl:
Vì 102016+14 là số chẵn nên chia hết cho 2
Ta có: 102016+14=10...0+14=100...014
Lại có : 1+0...0+1+4=6 chia hết cho 3
=> 102016+14 chia hết cho 3
Kl:
Chứng minh rằng:
a) 102002 + 8 chia hết cho cả 9 và 2.
b) 102004 + 14 chia hết cho cả 3 và 2.
chứng minh rằng
1033+8 chia hết cho 9 và 2
1014+14 chia hết cho 3 và 5
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
chứng minh rằng:
a) 1033+8 chia hết cho 9 và 2
b) 1014+14 chia hết cho 3 và 5
Bài toán 1:
Cho A = 3 + 3^3 + 3^5 + ... + 3^1991
Chứng minh A chia hết cho 13, chia hết cho 14
Bài toán 2:
Chứng minh rằng : (n+7) . (n+8) . (n+9) chia hết cho 2 và chia hết cho 3 (n thuộc N)
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
47. a) Chứng minh rằng : 14^14 – 1 chia hết cho 3 b) Chứng minh rằng : 2009^2009 – 1 chia hết cho 2008.
Chứng minh rằng
a)14^14 - 1 chia hết cho 3
b)A=2+2^2+2^3+...+2^60 chia hết cho 15
chứng minh rằng
a. 10^2002 + 8 chia hết cho cả 9 và 2
b. 10^2004 + 14 chia hết cho cả 3 và 2