Cho x,y,z là những số thực dương thỏa mãn : \(x+y+z\le1\)Chứng minh rằng:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
Cho x, y, z là các số thực dương. Chứng minh rằng:
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3\sqrt{3}}{2}\) nếu x + y + z = xyz
Cho các số thực dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng:
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2}+1}+\dfrac{1}{z^2+1}\le\dfrac{3}{\sqrt{2}}\)
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
Chứng minh rằng:
x2-xy+y2+1>0
cho các số thực dương x,y,z thỏa mãn x2 + y2 + z2 + (x+y+z)2 \(\le\)4.
chứng minh: \(\frac{xy+1}{\left(x+y\right)^2}+\frac{yz+1}{\left(y+z\right)^2}+\frac{zx+1}{\left(x+z\right)^2}\ge3\)
Tìm giá trị nhỏ nhất của biểu thức : \(f\left(x,y\right)=\sqrt{\left(x-3\right)^2+\left(y-4\right)^2}+|x|+|y|\)
(Sử dụng kiến thức hình học để chứng minh)
Cho 2 số thực x và y chứng minh bằng phản chứng rằng:
Nếu \(x\ne-1\)và \(y\ne-1\)thì \(x+y+xy\ne-1\)
Cho các số thực dương x,y,z sao cho x+y+z+2=xyz
Chứng minh x+y+z+6>2(√xy+√yz+√xz)
1. Cho \(x,y\ne0\)chứng minh \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)2. Cho a,b>0 chúng minh \(\frac{a^2b}{2a^3+b^3}+\frac{2}{3}\ge\frac{a^2+2ab}{2a^2+b^2}\)