Cho p, q, r là các số nguyên tố phân biệt. Chứng minh phương trình sau có nghiệm nguyên dương:
xq + yp = zr
Cho x, y, z là 3 số nguyên dương nguyên tố cùng nhau thảo mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\)
Chứng minh rằng x + y là số chính phương
Cho x, y là hai số nguyên tố cùng nhau, chứng minh rằng, nếu z là số tự nhiên lớn hơn 0 thì phương trình sau vô nghiệm:
1/x + 1/y = 1/z
Chứng minh rằng không tồn tại 5 số nguyên dương phân biệt sao cho tổng ba số bất kì trong chúng là một số nguyên tố.
1/ Cho a,b,c là ba số dương. Chứng minh rằng : \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge1\)
2/ Tìm tất cả các cặp số nguyên tố (x;y) là nghiệm của phương trình: \(x^2-2y^2-1=0\)
Mọi người ơi giúp e hai bài này với ạ
Bài 1: Chứng minh rằng phương trình: x^2 + y^2 = 8z+6 không có nghiệm nguyên
Bài 2: Tìm n nguyên dương để n^4 + n^3 + n^2 + n +1 là bình phương của một số nguyên dương
chứng minh phương trình sau:a(x-a^2+1)=a^2+2-2x luôn có nghiệm nguyên dương với a là tham số,a thuộc Z,a khác 2
Chứng minh rằng phương trình sau không có nghiệm nguyên: \(x^2+y^2+z^2=1999.\)
Cho 5 số nguyên dương đôi một phân biệt sao cho chúng chỉ có các ước nguyên tố là 2 hoặc 3 . Chứng minh rằng ta luôn tìm được hai số trong các số đã cho mà tích của chúng là số chính phương