a) A = 12 + 22 + ...+ n2 = 1.(2 - 1) + 2.(3 - 1) + ...+ n.(n+ 1 - 1) = [1.2 + 2.3 + ...+ n.(n+1)] - (1 + 2 + ... + n)
Tính B = 1.2 + 2.3 + ...+ n.(n+1)
=> 3.B = 1.2.3 + 2.3.3 +3.4.3 + ...+ n.(n+1).3
= 1.2.3 + 2.3.(4 -1) + 3.4 .(5 - 2) + ...+ n.(n+1).((n+2) - (n-1) )
= [1.2.3.+ 2.3.4 + 3.4.5 +...+ n.(n+1).(n+2)] - [1.2.3 + 2.3.4 +...+ (n-1).n(n+1)] = n(n+1)(n+2)
=> B = n(n+1).(n+2)/3
Tính 1 + 2 + 3 + ..+ n =(n+1).n / 2
Vậy A = n(n+1).(n+2)/3 - (n+1).n / 2 = n(n+1).(2n+1) / 6
Ta có: \(n^3=n.n.n=n.\left(\frac{n+1+n-1}{2}\right).n\left(\frac{\left(n+1\right)-\left(n-1\right)}{2}\right)\)
\(=\left(\frac{n\left(n+1\right)}{2}+\frac{n\left(n-1\right)}{2}\right).\left(\frac{n\left(n+1\right)}{2}-\frac{n\left(n-1\right)}{2}\right)=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)
(Áp dụng công thức a2 - b2 = (a-b).(a+b))
Áp dụng vào ta có: \(1^3=\left(\frac{1.2}{2}\right)^2-\left(\frac{1.0}{2}\right)^2\)
\(2^3=\left(\frac{2.3}{2}\right)^2-\left(\frac{2.1}{2}\right)^2\)
\(3^3=\left(\frac{3.4}{2}\right)^2-\left(\frac{3.2}{2}\right)^2\)
......................
\(n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2-\left(\frac{n\left(n-1\right)}{2}\right)^2\)
Cộng từng vế ta được:
\(1^3+2^3+....+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
tính hộ cái nha
S=5/1*6+5/6*11+5/11*16+5/16*21+...+5/96*101+5/101*106
Mk giải iúp sakura nè
S= 5/1x6+5/6x11+5/11x16+5/16x21+...+5/96x101+5/101x106
S= 5(1/1x6+1/6x11+1/11x16+1/16x21+....+1/96x101+1/101x106)
S= 5( 1/1-1/6+1/6-1/11+11/11-1/16+1/16-1/21+..........+1/96-1/101+1/101-1/106)
S=5(1/1-1/106)
S= 5x105/106
S= 525/106
@sakủra s=1/5 .(5-5/6+5/6-5/11+5/11-5/16+....+5/101-5/106)=1/5.(5-5/106)
1^2-2^2+3^2-4^2+...-(-1)^(n-1)*n^2=(-1)^(n-1)*n(n+10/2