Ta có:
\(VT^2\ge VP^2\)
\(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)
\(x^2+y^2-2xy\ge x^2+y^2-2\left|xy\right|\)
\(-2xy\ge-2\left|xy\right|\)
\(2xy\le2\left|xy\right|\)
Điều này đúng nên BĐT đúng
Ta có:
\(VT^2\ge VP^2\)
\(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)
\(x^2+y^2-2xy\ge x^2+y^2-2\left|xy\right|\)
\(-2xy\ge-2\left|xy\right|\)
\(2xy\le2\left|xy\right|\)
Điều này đúng nên BĐT đúng
Chứng minh rằng với mọi x, y thuộc Q thì :
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Chứng minh rằng:
\(\frac{\left|x\right|}{2008+\left|x\right|}+\frac{\left|y\right|}{2008+\left|y\right|}\ge\frac{\left|x-y\right|}{2008+\left|x-y\right|}\) với bất kì số x ; y nào.
P/S: Mấy thím nào giỏi thì giúp con ~~
Cho x, y thuộc Q. Chứng tỏ rằng: \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Cho x,y \(\inℚ\). Chứng minh rằng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Chứng mình rằng:
\(\frac{\left|x\right|}{2008+\left|x\right|}+\frac{\left|y\right|}{2008+\left|y\right|}\ge\frac{\left|x-y\right|}{2008+\left|x-y\right|}\) với bất kì các số x , y nào.
chứng minh
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
Chứng minh rằng:\(x^{\left(2^{y+1}\right)}+x^{\left(2^y\right)}+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{\left(2^{y-1}\right)}+x^{\left(2^{y-2}\right)}+1\right)\left(x^{\left(2^y\right)}+x^{\left(2^{y-1}\right)}+1\right)\)với mọi \(x\in N;x>0\)và \(y\in N;y>1\)
Cho \(x,y\in Q\). Chứng tỏ rằng:
a,\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b,\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(CMR\) :
a) với x,y thuộc Z thì :\(\left[x+y\right]=\left[x\right]+\left[y\right]\)
b) với x thuộc Z, y thuộc Q thì \(\left[x+y\right]=x+\left[y\right]\)