Với \(n\)chẵn thì \(n+6\)là số chẵn suy ra \(\left(n+3\right)\left(n+6\right)⋮2\).
Với \(n\)lẻ thì \(n+3\)là số chẵn suy ra \(\left(n+3\right)\left(n+6\right)⋮2\).
- Nếu n ⋮ 2 thì n = 2k ( k ∈ N)
Suy ra : n + 6 = 2k + 6 = 2(k + 3)
Vì 2(k + 3) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
- Nếu n không chia hết cho 2 thì n = 2k + 1 (k ∈ N)
Suy ra: n + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2)
Vì 2(k + 2) ⋮ 2 nên (n + 3).(n + 6) ⋮ 2
Vậy (n + 3).(n+ 6) chia hết cho 2 với mọi số tự nhiên n.