Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hà Linh

Chứng minh rằng với mọi số tự nhiên thì 2n+3 và 2n+1 nguyên tố cùng nhau

Gọi ƯCLN(2n + 3; 2n + 1) = d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)          

=> 2n + 3 - (2n + 1) \(⋮\)d

=> 2n + 3 - 2n - 1 \(⋮\)d

=> 2 \(⋮\)d          => d  ∈ {1;2}

Do 2n + 1 lẻ => d lẻ => d = 1

Vậy  ∀ x  ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa