cách 2 :
chứng minh rằng với mọi số tự nhiên n thì n² + n + 1 không chia hết cho 9?
Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1
+ Giả sử : n chia hết cho 9
=> n² chia hết cho 9
=> (n + 1) không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
+ Giả sử : ( n + 1) chia hết cho 9
=> n(n+1) chia hết cho 9
=> n(n+1) + 1 không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
Đúng 0
Bình luận (0)