Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng minh rằng với mọi số thực a, b, c phương trình: ( x   –   a ) . ( x   -   b )   +   ( x   -   b ) . ( x   -   c )   +   ( x   –   c ) . ( x   -   a )   =   0  có ít nhất một nghiệm.

Cao Minh Tâm
20 tháng 8 2017 lúc 5:39

- Đặt f(x) = (x – a).(x - b) + (x - b).(x - c)+ (x – c).(x- a) thì f(x) liên tục trên R.

- Không giảm tính tổng quát, giả sử a ≤ b ≤ c

- Nếu a = b hoặc b = c thì f(b) = ( b - a).(b - c) = 0 suy ra phương trình có nghiệm x = b.

- Nếu a < b < c thì f(b) = (b - a)(b - c) < 0 và f(a) = (a - b).(a - c) >) 0

   do đó tồn tại x 0  thuộc khoảng (a, b) để  f x 0 =   0

- Vậy phương trình đã cho luôn có ít nhất một nghiệm.