Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
A B C

Chứng minh rằng với mọi số nguyên n thì :

3.5^2n+1 + 2^3n+1 chia hết cho 17

đăng việt cường
13 tháng 6 2018 lúc 21:41

Trả lời ngắn tí như ri này:

Ta có:\(3.25^n.5\) =\(15.25^n\) \(\equiv15.8^n\left(mod17\right)\) .

\(2^{3n+1}=8^n.2\left(mod17\right)\) .

\(\Rightarrow3.5^{2n+1}+2^{3n+1}\equiv15.8^n+2.8^n\left(mod17\right)\) .

\(=17.8^n\) chia hết cho 17 \(\forall\) so nguyên n.

Đinh quang hiệp
13 tháng 6 2018 lúc 15:33

\(3\cdot5^{2n+1}+2^{3n+1}=3\cdot5^{2n}\cdot5+2^{3n}\cdot2=15\cdot25^n+8^n\cdot2\)

\(=\left(17-2\right)\cdot25^n+8^n\cdot2=17\cdot25^n-2\cdot25^n+8^n\cdot2=17\cdot25^n-2\left(25^n-8^n\right)\)

\(=17\cdot25^n-2\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

\(=17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

vì 17 chia hết cho 17 nên 17*25^n chia hết cho 17(1)

vì 34 chia hts cho 17 nên 34(25^n-1+25^n-2*8+25^n-3*8^2+...+8^n-1) chia hết cho 17

\(\Rightarrow17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)chia hết cho 17

\(\Rightarrow3\cdot5^{2n+1}+2^{3n+1}\)chia hết cho 17 (đpcm)


Các câu hỏi tương tự
Nguyễn Ngọc Diệp
Xem chi tiết
Dương Ngọc Hà
Xem chi tiết
Dương Mai Ngân
Xem chi tiết
Muyn Clover
Xem chi tiết
Nguyễn Như Đạt
Xem chi tiết
Công Chúa Nụ Cười
Xem chi tiết
Bùi Lan Phương
Xem chi tiết
Lê Thành Công
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết