\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1-b^2\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b\left(a+1\right)}{2}\)
đến đây cộng lại rồi dùng cô si là ra
\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1-b^2\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b\left(a+1\right)}{2}\)
đến đây cộng lại rồi dùng cô si là ra
Cho a,b,c là các số dương thỏa mãn a+b+c=3.Chứng minh\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Với a,b,c là các số thực dương thỏa mãn: \(a+b+c+ab+bc+ca=6abc\).Chứng Minh Rằng:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
cho các số dương a,b,c thỏa manc điều kiện a + b + c + ab + bc + ac = 6abc.
chứng minh rằng: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
1. Cho a,b,c là ba số dương. Chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
2. Cho ba số thực dương a,b,c thoản mãn abc=1. Chứng minh rằng:
\(\frac{4a^3}{\left(1+b\right)\left(1+c\right)}+\frac{4b^3}{\left(1+c\right)\left(1+a\right)}+\frac{4c^3}{\left(1+a\right)\left(1+b\right)}\ge3\)
*sử dụng nguyên lí Dirichlet nha:]*
Cho a,b,c là các số thực dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a+3}{\left(a+1\right)^2}+\frac{b+3}{\left(b+1\right)^2}+\frac{c+3}{\left(c+1\right)^2}\ge3\)
1 . cho a, b, c là 3 số thực dương thỏa mãn a+b+c=1
Tìm GTLN \(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
2 . Cho các số thực a , b , c > 0 thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Cho a,b,c dương thỏa mãn a+b+c+ab+bc+ca=6abc
Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Cho a , b , c là các số thực dương thỏa mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng :
\(\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge3\)
Cho a , b , c dương :
Chứng minh rằng : \(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\)