Cho A=n^6-n^4+2n^3+23n^2( với n thuộc N, n>1)\chứng minh rằng A không phải là số chính phương
ai giúp m vs m sẽ like
Cho A=n^6-n^4+2n^3+23n^2( với n thuộc N, n>1)\chứng minh rằng A không phải là số chính phương
chứng minh: n4+6n3+23n2+18n chia hết cho 24 với mọi n thuộc N
a,Chứng minh rằng : A = n3 + 23n chia hết cho 6 với mọi số tự nhiên n
b,Tìm tất cả các cặp số nguyên (x ; y) thỏa mãn đẳng thức:
2xy + x + y = 23
Chứng minh rằng: Nếu \(a\inℕ\), \(a>1\) thì \(A=\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số.
Chứng minh rằng \(^{n^3}\)+ 23n chia hết cho 6( n thuộc Z)
Chứng minh rằng: \(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\) với mọi \(n\inℕ^∗\)
Chứng minh : n^5-11n chia hết cho 5
Chứng minh :n^3+23n chia hết cho 5
CMR vs mọi số nguyên n, ta có
\(n^3+23n:6\).