Tìm các số tự nhiên x,y thoả mãn : 10 < x ; y < 30 và x = ƯCLN(2y+5; 3y + 2)
Cho x, y là số tự nhiên thỏa mãn 23x+2y ⋮ 6. Chứng minh rằng:
a) 11x+2y ⋮ 6
b) x-2y ⋮ 6
Chứng Minh Rằng: Nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+y thì x-y, 2x+2y+1 và 3x+3y+1 là các số chính phương.
Bài 1: Chứng minh rằng với mọi số nguyên x, y thì
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương
chứng minh rằng nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+ỵ thì x-y , 2x-2y+1 , 3x-3y+2 là các số chính phương
Chứng minh x,y là các số nguyên thoả mãn x-3y chia hết cho 11 thì 3x+2y chia hết cho 11
Tìm các số tự nhiên x và y , sao cho :
a) (2x+1)(y-3)=10 b) (3x-2)(2y-3)=1
c) (x+1)(2y-1)=12 d) x+6=y(x-1)
e) x-3=y(x+2)
Bài 1: tìm các số nguyên x hoặc y thoả mãn
A) (2x-y) ( x+2) =12
B) xy= 2x+2y
Bài 2: tìm số tự nhiên n sao cho:
A) n+3 chia hết cho n
B) n+4 chia hết cho n+1
Tìm các số tự nhiên x,y sao cho:
a,(2n+1)(y+3)=10
b,(3x-2)(2y-3)=3
c,(x+1)(2y-1)=12
d,y(x-1)+x=6
e,x+3=y(x-2)
f,2y+4=x(y-1)