ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
a/b=c/d=> ad = bc
=> 2ad = 2bc
=> ac + 2ad + bd = ac + 2bc + bd
=> ac + ad - bc - bd = ac + bc - ad - bd
=> a ( c + d ) - b ( c + d ) = c ( a + b ) - d ( a + b )
=> ( a - b ) ( c + d ) = ( c - d ) ( a + b )
Vậy a+b/a-b=c+d/c-d ( đpcm)