\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
chứng minh rằng từ tỉ lệ thức a/b=c/d ( a-b khác 0, c - d khác 0) ta có thể suy ra tỉ lệ thức a+b/c-b+c+d/c-d
Cho \(a,b,c,d\ne0\). Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
*P/S : Giải bằng ba cách
CMR: các đẳng thức sau có thể suy ra tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)
\(\frac{2a+13b}{3a-7b}=\frac{2c+13c}{3c-7d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Biết rằng \(b+d\)không bằng 0; \(b-d\)không bằng 0. CMR \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), chứng minh rằng
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
cho \(\frac{a}{b}=\frac{c}{d}\)
CMR ta có tỉ lệ thức \(\frac{a^2+b^2}{c^2+d^2}=\frac{ad}{cd}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng rằng \(\frac{2012a+2013b}{2012a-2013b}=\frac{2012c+2013d}{2012c-2013d}\)
cho các số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)với b > 0 , d > 0
Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)