Chứng minh rằng trong một tam giác, đường tròn ngoại tiếp đi qua trung điểm của đoạn thẳng nối tâm đường tròn nội tiếp và tâm đường tròn bàng tiếp tam giác.
ho tam giác abc nội tiếp đường tròn (o,r) goi I là tâm của đường tròn nội tiếp tam giác đó gọi M N P lần lượt là tâm của các đường tròn bàng tiếp trong các góc A, B, C. gọi K là điểm đối xứng của I qua O. Chứng minh rằng K laftaam đường tròn ngoại tiếp tam giác MNP
cho tam giác ABC cân ,I là tâm đường tròn nội tiếp K là tâm đường tròn bàng tiếp góc A,O là trung điểm của IK
a)chứng minh 4 điểm B,I,C.K,cùng thuộc một đường tròn tâm o
b)chứng minh AC là tiếp tuyến của đường tròn tâm O
Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp và K là tâm đường tròn bàng tiếp góc A của tam giác
a, Chứng minh bốn điểm B, C, I, K cùng thuộc đường tròn (O; IO) vói O là trung điểm của đoạn thẳng IK
b, Chứng minh AC là tiếp tuyến của (O)
c, Biết AB = AC = 20 cm và BC = 24 cm tính bán kính của (O)
Mỗi câu sau đây đúng hay sai?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.
e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.
Cho nửa đường tròn tâm O đường kính AB ,C là một điểm nằm giữa O và A đường thẳng vuông góc với AB cắt nửa đường tròn trên tại I . K là một điểm bàng kỳ nằm trên đoạn thẳng CI ( K khác C và I ), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D.
a, chứng minh : các tứ giác BCKM, ACMD nội tiếp đường tròn.
b, chứng minh: ∆ABD~∆MBC
c, chứng minh tâm đường tâm đường tròn ngoại tiếp tam giác ABC D nằm trên một đường thẳng tâm đường tròn ngoại tiếp tam giác AKD nằm trên một đường thẳng cố định Khi K di động trên đoạn thẳn
Cho tam giác ABC cân tại A, I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A, O là trung điểm của IK.
a,C/minh: B, C, I, K cùng nằm trên một đường tròn
b, C/minh: AC là tiếp tuyến của đường tròn (O).
c, Tính bán kính đường tròn (O) biết AB = AC = 20cm, BC = 24cm
cho tam giác ABC có ba góc nhọn . các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh CEHD nội tiếp trong một đường tròn . xác định vị trí tâm O của đường tròn ngoại tiếp tứ giác CEHD
b) chứng minh góc FEH= góc DEH
Chứng minh H là tâm đường tròn nội tiếp tam giác DEF
c)cho CH= 4cm. Tính độ dài đường tròn (O) và diện tích hình tròn (O)
Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC
. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .
1) Chứng minh rằng BCQP là tứ giác nội tiếp.
2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .
3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác
BCQP . Chứng minh rằng I , H, K thẳng hàng.