Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4
Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4
Chứng minh rằng: Trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng là:4
Chứng minh rằng: Trong 12 số tự nhiên bất kì bao giờ cũng chọn ra được hai số mà hiệu của chúng chia hết cho 11
Cho 7 số tự nhiên bất kì chứng minh rằng bao giờ cũng có thể chọn ra 2 số mà hiệu chia hết cho 6
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Cho 7 số tự nhiên bất kì. Chứng minh bao giờ cũng có thể cohonj ra 2 số mà hiệu của chúng chia hết cho 6
cho 5 số tự nhiên bất kì chứng minh rằng :trong 5 số ấy có thể chọn ra 2 số mà hiệu bình phương của chúng chia hết cho 7
chứng minh rằng trong 7 số tự nhiên bất kì tùy chọn bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4
Cho 5 số tự nhiên bất kì. Chứng minh rằng trong 5 số ấy ta có thể chọn ra 2 số mà hiệu các bình phương của chúng chia hết cho 7