Ta đặt AB = c, BC = a,CA = b.
Theo tính chất đường phân giác ta có:
\(\frac{CD}{AD}=\frac{BC}{BA}\Rightarrow\frac{CD}{AD+CD}=\frac{CD}{AC}=\frac{BC}{BA+BC}\Rightarrow CD=\frac{AB.BC}{AB+BC}=\frac{ab}{c+a}\)
\(\Leftrightarrow\frac{CI}{CE}=\frac{a+c}{a+b+c}\)
Áp dụng định lý Py-ta-go đảo, ta có:
\(BD.CE=2BI.IC\Rightarrow\frac{BI}{BD}.\frac{IC}{CE}=\frac{1}{2}\Rightarrow\frac{\left(a+b\right)\left(b+c\right)^2}{a+b+c}=\frac{1}{2}\Leftrightarrow a^2+b^2+c^2\Rightarrow\Delta ABC\perp A\)