Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uzumaki

Chứng minh rằng ta có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)nếu có 1 trong các đẳng thức sau(Giả thiết các tỉ lệ thức đều có nghĩa):

a)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

b) (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Câu trả lời hay, đúng và nhanh nhất mik sẽ tick

Trà My
4 tháng 6 2016 lúc 17:07

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)

b) Áp dụng kết quả phần a) và tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)(chỗ này mình phá ngoặc luôn nhé)

\(\Rightarrow\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)(đpcm)


Các câu hỏi tương tự
Uzumaki
Xem chi tiết
Uzumaki
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Yuki
Xem chi tiết
Nguyen Thanh Thao
Xem chi tiết
nguyenthidung
Xem chi tiết
Uzumaki
Xem chi tiết
I love thu ngân
Xem chi tiết
zNkókz zKhôngz zNảnz
Xem chi tiết