Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)
Đặt \(a-1=x^2;b-1=y^2;c-1=z^2\)thì \(x,y,z\ge1\)và ta đưa bất đẳng thức cần chứng minh về dạng \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)
Áp dụng bất đẳng thức Bunyakovsky, ta được: \(x+y\le\sqrt{\left(x^2+1\right)\left(1+y^2\right)}\Rightarrow x+y+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\)
và \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\le\)\(\sqrt{\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]\left(1+z^2\right)}\)
Từ đó suy ra \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)hay ta có đpcm
Dòng 1 là \(x,y,z\ge0\)nha, nhầm lẫn