\(\sqrt{4}=2\)
Mà 2 thuộc tập hợp Z . Tất cả số nằm trong N , Z và một số phân số khác đều thuộc Q
=> 2 thuộc Q
=> 2 là số hữu tỉ ( vì Q là tập hợp số hữu tỉ )
Ta có: \(\sqrt{4}\)=\(\sqrt{2^2}\)=2
Do đó: 2 \(\in\)Q nên \(\sqrt{4}\) là 1 số hữu tỉ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{4}=2\)
Mà 2 thuộc tập hợp Z . Tất cả số nằm trong N , Z và một số phân số khác đều thuộc Q
=> 2 thuộc Q
=> 2 là số hữu tỉ ( vì Q là tập hợp số hữu tỉ )
Ta có: \(\sqrt{4}\)=\(\sqrt{2^2}\)=2
Do đó: 2 \(\in\)Q nên \(\sqrt{4}\) là 1 số hữu tỉ
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Cho đa thức P(x) = \(ax^2+bx+c\) có tính chất P(1) , P(4) , P(9) là các số hữu tỉ . Chứng minh rằng khi đó a,b,c là các số hữu tỉ
Chứng minh rằng nếu a,b,c và\(\sqrt{a}\)+\(\sqrt{b}\)+\(\sqrt{c}\)là các số hữu tỉ
Cho x là số hữu tỉ khác 0, y là số vô tỉ. Chứng minh rằng: x+y; x-y; x.y; \(\frac{x}{y}\) la những số vô tỉ
Chứng minh rằng nếu a,b,c và \(\sqrt{a}\)+\(\sqrt{b}\)+\(\sqrt{c}\)là các số hữu tỉ
GIÚP MÌNH NHA
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ âm nếu a và b khác dấu.
CHO X LÀ MỘT SỐ HỮU TỈ KHÁC 0, Y LÀ MỘT SỐ VÔ TỈ . CHỨNG TỎ RẰNG X+Y VÀ X*Y LÀ NHỮNG SỐ VÔ TỈ
AI NHANH ĐÚNG NHẤT MINK SẼ TÍCH
Chứng minh rằng \(sqrt{2}\) là số vô tỉ
Chứng minh rằng \(sqrt{2} \) là số vô tỉ