n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Gọi A= n.(n+1).(2n+1)
Nếu n là số chẵn thì A chia hết cho 2 ,nếu n là số lẻ thì n+1 chia hết cho 2 nên A cụng chia hết cho 2. Xét n=3k, n=3k+1, n=3k-1(k thuộc Z), bao giờ cũng có một thừa số của A chia hết cho 3, do đó A chia hết cho 3
Vậy A chia hết cho 6