Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\left(x+y+z=1\right)\)
Dấu ''='' xảy ra <=> x = y = z = \(\frac{1}{3}\)
Vậy x2 + y2 + z2 \(\ge\frac{1}{3}\) tại x = y = z = \(\frac{1}{3}\)