Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nganhd

Chứng minh rằng: nếu p và p2 + 2 là các số nguyên tố thì p3 + 2 cũng là số nguyên tố.

bùi minh vũ
7 tháng 4 2018 lúc 20:38

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.

Đặng Văn Gia Khánh
3 tháng 10 2024 lúc 20:15

Dễ

 


Các câu hỏi tương tự
trần văn trung
Xem chi tiết
Quang Nguyễn
Xem chi tiết
BiBo MoMo
Xem chi tiết
Nguyễn Hằng Nga
Xem chi tiết
Tran Nu Mi Linh
Xem chi tiết
Phan Vũ Như Quỳnh
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
Trần Phương Trinh
Xem chi tiết
Nguyễn Lê Ngọc Mai
Xem chi tiết