Bài 8: Tính chất của dãy tỉ số bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quynh Truong

chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

thì\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 13:55

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)

hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

 

lenguyenminhhai
3 tháng 1 2021 lúc 13:57

undefined


Các câu hỏi tương tự
Leô Lâm Nguyễn
Xem chi tiết
25.Khôi-6A8
Xem chi tiết
25.Khôi-6A8
Xem chi tiết
Dương Thị Ngọc Ánh
Xem chi tiết
Bùi Thị Phương Anh
Xem chi tiết
Leona
Xem chi tiết
Công Chúa Hoa Hướng Dươn...
Xem chi tiết
Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Hoàng Fake
Xem chi tiết