Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
a) Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}\)
\(\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
b)
\(\frac{2a-b}{2a+b}=\frac{2bk-b}{2bk+b}=\frac{b(2k-1)}{bb(2k+1)}=\frac{2k-1}{2k+1}\)
\(\frac{2c-d}{2c+d}=\frac{2dk-d}{2dk+d}=\frac{d(2k-1)}{d(2k+1)}=\frac{2k-1}{2k+1}\)
\(\Rightarrow \frac{2a-b}{2a+b}=\frac{2c-d}{2c+d}\) (đpcm)