Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Chứng minh rằng nếu \(\dfrac{a}{b}\)=\(\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:15

Đặt \(\dfrac{a}{b}=\dfrac{b}{d}=k\Leftrightarrow a=bk;b=dk\Leftrightarrow a=bk=dk^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{d}=\dfrac{dk^2}{d}=k^2\\\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{d^2k^4+d^2k^2}{d^2k^2+d^2}=\dfrac{d^2k^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=k^2\end{matrix}\right.\\ \LeftrightarrowĐpcm\)